
Verification of Optimality and Costate Estimation
Using Hilbert Space Projection

Baljeet Singh,∗ Raktim Bhattacharya,† and Srinivas R. Vadali‡

Texas A&M University, College Station, Texas 77843-3141

DOI: 10.2514/1.38317

In this paper, we present a direct method for solving optimal control problems based on function approximation

using Hilbert space projection. In this approach, the state and control variables are approximated in a finite-

dimensional Hilbert space, and the state dynamics and the path constraints are imposed using projection. The

resulting nonlinear programming problem is analyzed to derive a set of conditions under which the costates of the

optimal control problemcanbe estimated from the associatedKarush–Kuhn–Tuckermultipliers. It is shown that the

estimated costates have the same order of finite-dimensional approximation as the state and control approximations.

The numerical results demonstrate that the present method can address a fairly general class of optimal control

problems, including problems with state inequality constraints.

I. Introduction

O PTIMAL control theory has found applications in a variety of
fields, including aerospace, engineering, economics, and the

sciences. With the availability of increasing computational power,
numerical methods to solve optimal control problems have become
extremely popular. These methods can largely be divided into two
categories: indirect methods and direct methods [1]. In an indirect
method, the optimal control problem (OCP) is dualized by intro-
ducing the costates, also known as dual variables. The optimality
conditions are derived using the calculus of variations and
Pontryagin’s minimum principle, leading to a two-point boundary-
value problem (TPBVP). Various numerical techniques are then
used to solve the TPBVP [2]. In a direct method, the optimal control
problem is discretized by parameterizing the unknowns to transcribe
the continuous-time OCP into a finite-dimensional nonlinear
programming problem (NLP) [3]. The NLP is then solved using
numerical optimization techniques. Although the indirect methods
provide high-accuracy solutions, solving the resulting TPBVP can
be extremely difficult due to its sensitivity to the unknown boundary
conditions and the initial guess of the costates. Also, the TPBVP has
to be derived analytically and, in the presence of path constraints,
the switching structure of the constrained/unconstrained arcs has to
be known a priori. A direct method requires much less analytical
derivation, and the resulting NLP can be solved with relative
ease. However, not all direct methods provide information about the
optimality of the solution. Verification and validation of results
are essential and can be performed naturally by the indirect methods
as they are based on solving the necessary conditions derived using
theminimum principle. Theminimum principle can be used to check
the optimality of a solution resulting from a direct method; however,
this requires estimates of the dual variables. Therefore, the
equivalence between dualization and discretization for a direct
method needs to be investigated.

Direct methods for optimal control problems differ in how they
approximate the state equations. Most of these methods are based on
collocation techniques, in which the constraints are imposed at a set
of discrete time instances; popular among these methods are the

Hermite–Simpson (HS) and the pseudospectral (PS) methods [4].
The HS methods use piecewise polynomials defined over a few
neighboring collocation points and thus are described as local
approximation methods [5–7]. The PS methods use globally
approximating interpolation polynomials to parameterize the state
and control trajectories [8–12] and a form of discretization to
represent the state derivatives. In another category of direct methods,
known as tau methods [13–17], global orthogonal polynomials are
used to parameterize the state and control trajectories and the
polynomial coefficients are treated as the optimization variables.

The early motivation to obtain discrete approximations of the
costates of an optimal control problem from a direct method stems
from the need to generate initial guesses for more accurate indirect
methods, like multiple shooting. Martell and Lawton [18] first
presented an algorithm to estimate the costates by formulating an
auxiliary optimization problembased on the solution obtained from a
direct method. Seywald and Kumar [19,20] made use of the
sensitivities of the variational cost function to obtain the costate
estimates. Other approaches investigated the relationship between
the costates and the Karush–Kuhn–Tucker (KKT) multipliers of the
NLP. In this framework, Stryk and Bulirsch [21] showed the
equivalence between the two for the HS method. Enright and
Conway [22] developed an algorithm using a parallel shooting
implementation of the Runge–Kutta method to achieve higher
accuracy in the costate estimates than that for the HS method. Hager
[23] presented the convergence analysis for Runge–Kutta-based
direct methods. It was noted that additional conditions on the co-
efficients of the integration scheme were required for a complete
commutation between dualization and discretization. This dis-
crepancy led Hager to design new Runge–Kutta methods for control
applications. Ross and Fahroo [11] and Gong et al. [24] presented a
similar result for the Legendre pseudospectral method, in which a set
of closure conditions are derived under which the costates can be
estimated from the KKT mutipliers. Williams [25] generalized the
same result for the Jacobi pseudospectral method. More recently,
Benson et al. [12] showed equivalence between the discrete costates
and the KKT multipliers for the Gauss pseudospectral method. The
convergence analysis and costate estimation procedure for tau
methods have not been addressed in the literature so far.

In this paper, we present a direct method in a generalized frame-
work of function approximation using Hilbert space projection. In
the method of Hilbert space projection (MHSP), the idea is to
approximate the state and control variables as linear combinations of
a priori selected basis functions of a Hilbert space, whereas the state
dynamics and the path constraints are imposed via projection. The
MHSP is flexible with respect to the choice of approximating
functions, for which both local and global basis functions can be
employed. Another main contribution of this paper is the derivation
of a costate estimation procedure for the MHSP, which has never
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been reported for the class of tau methods before. We examine the
KKT conditions associated with the direct optimization solution
and the discretized first-order necessary conditions for the optimal
control problem to define a set of “equivalence conditions” under
which the two approaches are completely equivalent. In other
words, if the equivalence conditions are satisfied, the Euler–
Lagrange (indirect) structure of the original OCP is preserved when
discretization is performed using the MHSP. In this case, the costate
estimates can be obtained from the KKT multipliers of the direct
optimization solution. This is a similar result as obtained for the PS
methods in [11,26]. In the present context, some interesting
observations are made regarding the previously published works on
costate estimation for the PS methods.

The paper is organized as follows. In Sec. II, we present a brief
introduction to the theory of function approximation and Hilbert
space projection. In Sec. III, we define the optimal control problemof
interest and some related assumptions. The detailed description of
the MHSP is presented in Sec. IV, wherein we derive the nonlinear
programming problem and associated KKT first-order necessary
conditions. In Sec. V, we derive the equivalence conditions and the
costate estimates for the MHSP. In Sec. VI, we describe the MHSP
when B-splines are used as approximating functions. Section VII
presents remarks on the obtained results with respect to previously
published works. In Sec. VIII, we present numerical examples to
demonstrate the applicability of the present method.

II. Function Approximation and Hilbert
Space Projection

In this section,wefirst briefly describe the concept ofHilbert space
projection applied to find solution of a function approximation
problem or a boundary-value problem (BVP). Then we describe our
method to transcribe an OCP to an NLP using this technique and
discuss the similarities and differences of our approach to the related
methods found in the literature. Let H be a Hilbert space equipped
with a norm k � kH and an inner-product h�; �iH. Let V be a closed
subspace ofH. Then, for any x 2 H, there is an x̂ 2 V such that the
error norm kekH � kx � x̂kH is minimized and for such x̂:

he; viH � 0 8 v 2 V (1)

This implies that the error e is orthogonal to the subspace V.
Therefore, the projection of e onto V is zero.

It is straightforward to solve a function approximation problem
using projection. Galerkin and tau methods use projection to solve
BVPs [27]. Consider a BVP in the form of Eq. (2):

L �x� � 0; ��x�jboundary � 0 (2)

where L��� is a differential operator, x is unknown, and����jboundary
is the boundary condition. Let V be spanned by a linearly
independent basis set BV :� f�jgNj�1. In the Galerkin method, the

approximate solution x̂ is written as x̂� x0 �
P

N
j�1 aj�j, where x0

satisfies the boundary conditions, that is, ��x0�jboundary � 0, and �j
vanish at the boundary. The coefficients fajgNj�1 are the unknowns to
be solved. Because the exact solution to the problem is not known,
the exact error cannot be evaluated. Hence, the projection of error
conditions as given in Eq. (1) cannot be used. Therefore, the residual
error defined as R� L�x̂� is evaluated, and the coefficients aj are
obtained by solving the system of equations generated by setting the
projection ofR to zero,

hR; �jiH � 0 j� 1; . . . ; N (3)

In the tau method, BV is chosen to be an orthonormal set and the
approximate solution x̂ is not required to satisfy the boundary
conditions explicitly as in the case of Galerkin method. The
boundary conditions are imposed as equality constraints in terms of
the unknown coefficients. In this case, if ���� 2 Rp,

x̂�
XN
j�1

aj�j

the following system of algebraic equations is solved:

��x̂�jboundary � 0 (4)

hR; �jiH � 0; j� 1; . . . ; N � p (5)

Because p equations are obtained from the boundary condition, a
corresponding number of projection equations are not imposed to
keep the system of equations deterministic. Thus, to solve for N
unknowns fajgNj�1, p equations are obtained from Eq. (4) andN � p
equations are obtained from Eq. (5).

We use a similar idea in the proposed method to solve optimal
control problems using Hilbert space projection. In an optimal
control problem, the unknown control variables provide extra
degrees of freedom to generate a system of algebraic equations.
Therefore, the projection equations can be imposed on all basis
functions. In our approach, we approximate the state and control
variables in a finite-dimensional Hilbert space. The state dynamics
and the path constraints are imposed via residual projection on all the
basis functions. The boundary conditions are imposed as a set of
linear equality constraints in the formulation of theNLP. Because the
basis functions are not required to satisfy the boundary conditions
explicitly, our method is a close generalization of the tau methods.
However, taumethods only use orthogonal approximating functions,
such as Legendre [13], Chebyshev [16,17], or Fourier [14,15] series
expansions. Our method differs from the tau methods as we require
the basis functions only be linearly independent but not necessarily
orthogonal. This allows us to use a more general class of basis
functions such as B-splines or exponential functions. Depending
upon the problem in hand, it can be advantageous to select such basis
functions to construct the approximation space.

III. Problem Formulation

For notational simplicity, we consider an optimal control problem
in Mayer form. This does not pose any restriction on the present
method as any optimal control problem can be represented in Mayer
form. We consider a continuous-time autonomous system with
mixed state-control constraints and free initial and final times. The
objective is to determine the state-control pair fx��� 2 Rn;u��� 2
Rm; � 2 ��0; �f �g and time instances �0 and �f that minimize the cost,

J���x��0�; x��f�; �0; �f� (6)

subject to the state dynamics,

_x��� � F�x���;u���� (7)

endpoint state equality constraints,

 �x��0�;x��f�; �0; �f� � 0 (8)

and mixed state-control path inequality constraints,

h �x���;u���� 	 0 (9)
where

�: Rn 
 Rm 
 R 
 R! R; F: Rn 
 Rm ! Rn;

 : Rn 
 Rm 
 R 
 R! Rp; h: Rn 
 Rm ! Rq

are continuously differentiable with respect to their arguments. It is
assumed that the optimal solution to this problem exists and, at any

time � 2 ��0; �f�, @
�h
@uhas full rank,where

�h is the active constraint set at
time �. Thus, the constraint qualifications required to apply the first-
order optimality conditions are implicitly assumed. We consider an
autonomous system because an extension to a nonautonomous
system is straightforward. This is done by taking time � as an
additional state to the original system and then setting _� � 1. We
consider mixed state-control inequality constraints for simplicity,
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although numerical results are presented to show that the method of
functional approximation is applicable to the problems with pure
state inequality constraints also.

IV. Method of Hilbert Space Projection

A direct method to solve an optimal control problem typically
consists of two steps. First, state and control trajectories are approxi-
mated using a known functional form with a set of coefficients to be
determined. Second, a set of equations is derived in terms of the
unknown coefficients to impose the state dynamics and an NLP
is formulated. In the case of the HS method, for example, the
approximation functions are piecewise cubic polynomials with their
values at node points as unknown coefficients. The constraints are
derived by imposing the state equations at the midpoint of each
polynomial segment. In an Nth-order Legendre pseudospectral
method, the states are approximated as Nth degree polynomials in
Lagrange’s form, with their values at the Legendre–Gauss–Lobatto
(LGL) points as unknowns. The state equations are also imposed at
the LGL points. In this section, we present a direct method to solve
problem B in a generalized framework of function approximation by
using Hilbert space projection. In this method, we seek a finite-
dimensional approximation of the state and control trajectories in a
space of continuous functions V :� spanf�1�t�; �2�t�; . . . ; �N�t�;
t 2 �0; 1�g, with a linearly independent basis set BV :� f�j�t�gNj�1,
and an inner product defined as

hf; gi �
Z

1

0

f�t�g�t� dt; f�t�; g�t� 2 V (10)

First, we scale problem B appropriately so that the state and control
trajectories can be approximated inV. BecauseV is defined over the
time domain [0, 1], the following transformation is used to map the
problem from the physical domain � 2 ��0; �f� to the computational
domain t 2 �0; 1�:

��t� � ��f � �0�t� �0 (11)

The state and control trajectories are approximated as x̂�t�, û�t� 2 V,
t 2 �0; 1�, so that

x ���t�� � x̂�t� �
XN
k�1

�k�k�t� (12)

u ���t�� � û�t� �
XN
k�1

�k�k�t� (13)

where �k 2 Rn and �k 2 Rm are the unknowns. Differentiating the
expression in Eq. (12) with respect to � and using Eq. (11), we get

dx���t��
d�

� 1

��f � �0�
_̂x�t� � 1

��f � �0�
XN
k�1

�k _�k�t� (14)

where an overdot denotes the derivative with respect to t. Using
Eqs. (7) and (14), we define the residual error in state dynamics as

R F�t� � ��f � �0�F�x̂�t�; û�t�� � _̂x�t� (15)

For an exact solution,RF�t� is zero everywhere. In collocation-based
methods,RF�t� is set to zero at a discrete set of points. In theMHSP,
the projection of residual error on the approximating Hilbert spaceV
is set to zero. This is achieved by setting the projection ofRF�t� on
each element of the basis set BV equal to zero. Using Eq. (10), we
write

hRF; �ji �
Z

1

0

RF�t��j�t� � 0; j� 1; 2; . . . ; N (16)

Thus, in the present method, the residual error is minimized in anL2

sense. Next, we introduce a vector of slack variable functions,
s�t� 2 Rq, to convert the inequality constraint in Eq. (9) into an
equality constraint:

h �x���;u���� � s��� � s��� � 0 (17)

where � denotes the Hadamard product of two vectors. We
approximate the slack variable functions s��� in the functional space
V so that

s ���t�� � ŝ�t� �
XN
k�1

�k�k�t� (18)

where �k 2 Rq. Using Eqs. (12), (13), and (18), the residual in
Eq. (17) is obtained as

Rh�t� � h�x̂�t�; û�t�� � ŝ�t� � ŝ�t� (19)

Next, we set the projection of Rh�t� on each element of the basis set
BV equal to zero:

��f � �0�
Z

1

0

Rh�t��j�t� � 0; j� 1; 2; . . . ; N (20)

As will become clear in later sections, Eq. (20) is scaled by (�f � �0)
to obtain the costate estimates in a simpler form. This scaling does not
alter the value of the constraint in Eq. (17). Finally, the endpoint
equality constraint Eq. (8) is imposed as

 �x̂�0�; x̂�1�; �0; �f� � 0 (21)

Next, the discretizationmethod presented herein is used to transcribe
the optimal control problem into a nonlinear programming problem.

A. Nonlinear Programming Problem: B�

Function approximation of state and control trajectories using
Eqs. (12) and (13), combined with the Hilbert space projection as
in Eqs. (16), (20), and (21), transcribe problem B into a finite-
dimensional nonlinear programming problem, denoted as problem
B�. For the subsequent treatment, we denote the approximate state
dynamics as

F̂��k; �k; �k�t�� � F�x̂�t�; û�t�� (22)

Using the same notation for all other functionals, problem B� is
to determine f�k 2 Rn; �k 2 Rm; �k 2 RqgNk�1 and time instances �0
and �f that minimize the cost,

Ĵ� �̂��k; �k�0�; �k�1�; �0; �f� (23)

subject to the constraints,

Z
1

0

�
��f � �0�F̂��k; �k; �k�t�� �

XN
k�1

�k _�k�t�
�
�j�t� dt� 0;

j� 1; . . . ; N (24)

 ̂��k; �k�0�; �k�1�; �0; �f� � 0 (25)

��f � �0�
Z

1

0

�
ĥ��k; �k; �k�t��

�
XN
k�1

�k�k�t� �
XN
k�1

�k�k�t�
�
�j�t� dt� 0;

j� 1; . . . ; N (26)

Problem B� constituting Eqs. (23–26) can be solved using standard
numerical optimization software. Any numerical quadrature scheme
can be used to evaluate the integral expressions in Eqs. (23), (24), and
(26). In some cases, depending upon the problem in hand, the
integrals can be evaluated exactly in symbolic form by using
available software tools. For the results presented in this paper, we
use SNOPT [28] as the optimization solver and MATLAB®’s
Symbolic Math Toolbox for integral evaluations. Next, to facilitate
the derivation of the costate estimation procedure and related
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equivalence conditions, we derive the KKT first-order necessary
conditions associated with problem B�.

B. Karush–Kuhn–Tucker Conditions for Problem B�: B��

The Lagrangian for problem B� is formed by adjoining the cost
function with the constraint equations, written as

J0 � �̂��k; �k�0�; �k�1�; �0; �f�

�
XN
j�1

�Tj

Z
1

0

�
��f � �0�F̂��k; �k; �k�t��

�
XN
k�1

�k _�k�t�
�
�j�t� dt

� ��f � �0�
XN
j�1

�Tj

Z
1

0

�
ĥ��k; �k; �k�t��

�
XN
k�1

�k�k�t� �
XN
l�1

�l�l�t�
�
�j�t� dt

� �T ̂��k; �k�0�; �k�1�; �0; �f� (27)

where �j 2 Rn, �j 2 Rq, and � 2 Rp are the KKT multipliers
associated with the constraints given by Eqs. (24), (26), and (25),
respectively. The KKT first-order necessary conditions are obtained
by setting the derivatives of the Lagrangian J0 with respect to the
unknowns f�i; �i; �i; �i; �i; �; t0; tfg equal to zero. For brevity, we
introduce the following shorthand notation:

1) We use F̂ to denote F̂��k; �k; �k�t��.
2) We use a subscript to denote a partial derivative, for example,

@
@xF�x;u� is written as Fx. Using the same notation for all other
variables, we have for i� 1; . . . ; N,

@J0

@�i
� ��f � �0�

Z
1

0

�
F̂Tx
XN
j�1

�j�j�t� � ĥTx
XN
j�1

�j�j�t�
�
�i�t� dt

�
XN
j�1

Z
1

0

�j _�i�t��j�t� dt� ��̂x�0� �  ̂Tx�0����i�0� � ��̂x�1�

�  ̂Tx�1����i�1� (28)

Using integration by parts, we write

XN
j�1

Z
1

0

�j _�i�t��j�t� dt�
XN
j�1
��i�1��j�1� � �i�0��j�0��

�
XN
j�1

Z
1

0

�j _�j�t��i�t� dt (29)

Using Eqs. (28) and (29) and rearranging, we get

0� ��f � �0�
Z

1

0

�
F̂Tx
XN
j�1

�j�j�t� � ĥTx
XN
j�1

�j�j�t�

� 1

��f � �0�
XN
j�1

�j _�j�t�
�
�i�t� dt

�
�
�̂x�0� �  ̂Tx�0���

XN
j�1

�j�j�0�
�
�i�0�

�
�
�̂x�1� �  ̂Tx�1�� �

XN
j�1

�j�j�1�
�
�i�1� (30)

also,

@J0

@�i
� ��f � �0�

Z
1

0

�
F̂Tu
XN
j�1

�j�j�t� � ĥTu
XN
j�1

�j�j�t�
�
�i�t� dt� 0

(31)

@J0

@�i
�
Z

1

0

�
��f � �0�F̂ �

XN
k�1

�k _�k�t�
�
�i�t� dt� 0 (32)

@J0

@�i
�
Z

1

0

�
ĥ�

XN
k�1

�k�k�t� �
XN
l�1

�l�l�t�
�
�i�t� dt� 0 (33)

@J0

@�i
� 2

Z
1

0

�XN
k�1

�k�k�t� �
XN
j�1

�j�j�t�
�
�i�t� dt� 0 (34)

@J0

@�
�  ̂� 0 (35)

@J0

@�0
�
Z

1

0

�
F̂T
XN
j�1

�j�j�t�
�
dt � ��̂�0

� �T ̂�0 � � 0 (36)

@J0

@�f
�
Z

1

0

�
F̂T
XN
j�1

�j�j�t�
�
dt� ��̂�f

� �T ̂�f � � 0 (37)

Equations (30–37) constitute the KKT conditions for problem B�.
Next, we derive the first-order optimality conditions for problem B,
which are then discretized to derive equivalence between the costates
of the optimal control problem and the KKT multipliers of the
associated NLP.

V. Costate Estimation

As stated earlier, Fahroo and Ross first derived a set of conditions
under which a linear mapping exists between the costates and the
KKT multipliers of the nonlinear programming problem for the
Legendre pseudospectral method. In a similar fashion,Williams [25]
has derived a costate estimation procedure for nonclassical pseudo-
spectral methods. More rigorously, their derivation is based on the
commutative nature of problems B	N and BN	 under a set of closure
conditions, for which problem BN	 is the set of KKT conditions
associated with the NLP and problem B	N is the set of discretized
first-order optimality conditions. We adopt a similar approach by
comparing problems B	� and B�	 to derive equivalence conditions
under which these two problems commute.

A. First-Order Optimality Conditions for Problem B: B�
Problem B can be solved by applying a calculus of variations and

Pontryagin’s minimum principle. In this framework, the first-order
necessary conditions for optimality lead to a two-point boundary-
value problem derived by using the augmented Hamiltonian H and
the terminal cost C defined as

H �x;u; 	; 
; s� � 	T���F�x;u� � 
T����h�x;u� � s��� � s����
(38)

C �x��0�;x��f�; �; �0; �f� ���x��0�; x��f�; �0; �f�
� �T �x��0�; x��f�; �0; �f� (39)

where 	��� 2 Rn is the costate; 
��� 2 Rq and � 2 Rp are the
Lagrange multipliers; and s��� 2 Rq is the slack variable function.
The time dependence of state and control trajectories has been
dropped for brevity. Problem B	 seeks to find the functions
fx���;u���; 	���; 
���; � 2 ��0; �f�g, vector �, and time instances �0
and �f that satisfy the following conditions:

_x��� � F�x;u�
_	��� �Hx � _	��� � FTx	��� � hTx
��� � 0

Hu � FTu	��� � hTu
��� � 0; h�x;u� � s��� � s��� � 0

Hs � 2
��� � s��� � 0;  �x��0�;x��f�; �0; �f� � 0

f	��0�; 	��f�g � f�Cx��0�; Cx��f�g

fHj���0 ;Hj���f g � fC�0 ;�C�f g (40)
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B. Discretized First-Order Optimality Conditions: B��
Problem B	 as defined by equation set (40) must be discretized to

obtain conditions for optimality in the functional space V. The
costate trajectories and the Lagrangemultipliers are approximated as

	���t�� � 	̂�t� �
XN
k�1

~�k�k�t� (41)

_	���t�� � 1

��f � �0�
_̂
	�t� � 1

��f � �0�
XN
k�1

~�k _�k�t� (42)


���t�� � 
̂�t� �
XN
k�1

~�k�k�t� (43)

where ~�k 2 Rn and ~�k 2 Rq. Using Eqs. (12), (13), (18), and (41–
43), we obtain the residual errorR	 for equation set (40). We set the
projection of R	 on each element of the basis set BV equal to zero.
The following algebraic equations are obtained for i� 1; . . . ; N:

Z
1

0

�
��f � �0�F̂ �

XN
k�1

�k _�k�t�
�
�i�t� dt� 0 (44)

Z
1

0

�
F̂Tx
XN
k�1

~�k�k�t� � ĥTx
XN
k�1

~�k�k�t�

� 1

��f � �0�
XN
k�1

~�k _�k�t�
�
�i�t� t� 0 (45)

Z
1

0

�
F̂Tu
XN
k�1

~�k�k�t� � ĥTu
XN
k�1

~�k�k�t�
�
�i�t� dt� 0 (46)

Z
1

0

�
ĥ�

XN
k�1

�k�k�t� �
XN
l�1

�l�l�t�
�
�i�t� dt� 0 (47)

2

Z
1

0

�XN
k�1

�k�k�t� �
XN
k�1

~�k�k�t�
�
�i�t� dt� 0 (48)

 ̂�x̂��0�; x̂��f�; �0; �f� � 0 (49)

�XN
k�1

~�k�k�0�;
XN
k�1

~�k�k�1�
�
� f�Cx�0�; Cx�1�g (50)

fĤjt�0; Ĥjt�1g � fC�0 ;�C�f g (51)

where i� 1; 2; . . . ; N. Equations (44–51) represent the indirect
method solution to problemB, and their solution is an approximation
of the true optimal solution in the functional space V. Next, we
compare the discretized optimality conditions B	� with the KKT
conditions B�	 to obtain the equivalence between the costate
functions and the KKT multipliers of problem B�.

C. Equivalence Conditions

Wedefine a set of conditions that are necessary for the equivalence
of the results obtained by solving problemsB	� andB�	. Comparing
Eqs. (30) and (45), a complete equivalence of the two conditions
requires XN

j�1
�j�j�0� � ���̂x�0� �  ̂Tx�0��� (52)

XN
j�1

�j�j�1� � ��̂x�1� �  ̂Tx�1��� (53)

Comparing Eqs. (36) and (37) with Eq. (51), we obtain

Ĥjt�0 � Ĥjt�1 �
Z

1

0

�
F̂
XN
j�1

�Tj �j�t�
�
dt (54)

Thus, Eqs. (52–54), when added to theKKTconditions,fill the “gap”
between the direct and indirect method solutions of problem B (see
Fig. 1). We see that the direct method discretization of problem B
does not explicitly impose the boundary conditions on the discrete
costates. This loss of information is restored by the equivalence
conditions in Eqs. (52) and (53). The condition given by Eq. (54)
states the constancy of the Hamiltonian for an autonomous system.

D. Costate Estimates

The equivalence conditions defined in the previous subsection
provide the mapping between KKT multipliers f�kg and the costate

approximation 	̂�t�. Similarly, a mapping exists between the KKT
multipliers f�kg and the approximation of the Lagrange multiplier
function �̂�t�. Thus, under the conditions that Eqs. (52–54) hold,
comparing B	� and B�	, we get

�k � ~�k; �k � ~�k; k� 1; . . . ; N (55)

�� � (56)

Using Eqs. (55) and (56), the costates can be estimated in the Hilbert
spaceV. We summarize the costate estimation results for the MHSP
via the following theorem.

Theorem 1: Costate Mapping Theorem for the MHSP: Assume
that an optimal control problem is solved using the MHSP with an
underlying finite-dimensional Hilbert space V and the equivalence
conditions hold. Then, the L2-optimal estimates of the costates

�	̂�t�; 
̂�t�� inV and the terminal covector (�) can be obtained using
the KKT multipliers ��k; �k; �� of the associated NLP as

	���t�� � 	̂�t� �
XN
k�1

�k�k�t� (57)


���t�� � 
̂�t� �
XN
k�1

�k�k�t� (58)

�� � (59)

Proof: The solution to problemB	� exists by assumption. Because
equivalence conditions hold, substitution of Eq. (55) into Eqs. (41)
and (43) completes the proof.

Fig. 1 For a completemapping to exist betweenB� (directmethod) and

B� (indirect method), a set of equivalence conditions must be satisfied

along with the KKT conditions (B��) associated with B�.
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VI. Method of Hilbert Space Projection
Using B-Spline Approximation

There are a number of ways to select the basis functions for state
and control parameterization. The basis functions should be linearly
independent and continuous on the computational domain of the
problem in hand. In this section, we describe an algorithm to solve
optimal control problems using B-spline approximations and the
MHSP. A B-spline is a piecewise polynomial function with a
specified level of global smoothness. Also, the B-spline basis
functions have local support, which means that each basis function
only influences a local region of the global trajectory. Local support
is a desirable property of basis functions for numerically stable
algorithms. We first give a brief introduction of the construction and
properties of B-splines. Then we describe the implementation of the
MHSP on a computer.

A. B-Spline Approximation

A B-spline is a function defined on the interval �t0; tf� of the real
line, composed of segments of polynomials that are stitched at
predefined break points satisfying a given degree of smoothness. The
break points are a strictly increasing set of points f�igNi�0 such that
t0 � �0 < �1 < � � � < �N � tf . The number of continuous derivatives
across the breakpoints defines the order of smoothness. An order of
smoothness si at a breakpoint �i implies that the curve is Csi�1

continuously differentiable at �i. Given the number of subintervals
(N), the order of each polynomial segment (r), and the order of
smoothness (s) at the breakpoints, a B-spline curve y�t� is
represented in the basis form as

y�t� �
XNc
k�1

�kBk;r�t� (60)

where �k are the free parameters, and Nc � N�r � s� � s is the
number of free parameters or the degrees of freedom of y�t�. To
construct the basis functions Bk;r�t�, we define a knot vector. A knot
vector � is a nondecreasing sequence containing breakpoints with a
multiplicity of (r � s) at the interior breakpoints. The multiplicity of
end points f�0; �Ng is r.

�� �c1; c2; . . . ; c�Nc�r��

� ��0; �0; . . . ; �0
z�������}|�������{r�times

. . . �i; �i; . . . ; �i
z������}|������{�r�s��times

. . . �N; �N; . . . ; �N
z��������}|��������{r�times

� (61)

The basis functions Bk;r�t� are defined by a recurrence relationship
[29]:

Bk;0�t� �
�
1; if ci 	 t < ci�1;
0; otherwise

Bk;r�t� �
t� ck

ck�r�1 � ck
Bk;r�1�t� �

ck�r � t
ck�r � ck�1

Bk�1;r�1�t� (62)

The B-spline basis functions defined by Eq. (62) are continuous to a
specified degree, have local support, and are linearly independent. A
comprehensive list of B-spline properties can be found in [29].
Figure 2 provides an example of a B-spline and its basis functions
with N � 4, r� 4, and s� 3.

B. Numerical Implementation of the Method of Hilbert Space

Projection

In this subsection, we describe the numerical implementation of
the MHSP, which requires that the integrals in Eqs. (24) and (26) be
evaluated numerically. This can be accomplished by using a
numerical quadrature scheme. Using numerical quadrature changes
the structure of the resulting NLP and, in turn, the KKT conditions.
However, the results on costate estimation and equivalence con-
ditions can still be derived if the quadrature scheme is chosen so that
the integration by parts formula in Eq. (29) holds. Here we take a
simple example to substantiate this claim in the case of B-spline

approximation. Consider an optimal control problem A to deter-
mine the state-control pair fx�t� 2 Rn;u�t� 2 Rm; t 2 �0; 1�g that
minimizes

J���x�1�� (63)

subject to

_x�t� � F�x�t�;u�t�� (64)

 �x�0�; x�1�� � 0 (65)

where�: Rn ! R, F: Rn 
 Rm ! Rn, and  : Rn 
 Rn ! Rp. To
solve this problem using the MHSP, we approximate the state and
control trajectories as B-splines. Thus,

x �t� � x̂�t� �
XN
k�1

�kBk;r�t�; u�t� � û�t� �
XN
k�1

�kBk;r�t� (66)

for some N, r, s, and breakpoints 0� t0 < t1 < . . .< tN � 1. Let

�i :� �ti�1; ti�. For each domain�i, let fbijg
Nq
j�0 be the numberNq of

LGL quadrature points with corresponding quadrature weights wij
(see Fig. 3). Here we assume that the weights wij have been
appropriately scaled to transform the integration domain [�1, 1] of
the LGL points to �i. Then, the integral of a function f�t� over
interval �i can be approximated as

Z
�i

f�t� dt�
XNq
j�0

wijf�bij� (67)

Also, givenNq, the integral evaluation using the LGL rule is exact for
polynomials of degree 2Nq � 1 or less:

Fig. 2 Spline curve as a combination of B-splines.

Fig. 3 Arrangement of breakpoints and quadrature points in domain

t 2 �0; 1�. ftig
N
i�0 are the breakpoints. fbijg

Nq

j�0 are the quadrature points for

domain �i � �ti�1; ti�.
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p�t� 2 P2Nq�1;

Z
�i

p�t� dt�
XNq
j�0

wijp�bij� (68)

wherePn represents the space of all polynomials of a degree less than
or equal ton. TheB-spline basis functions are piecewise polynomials
such that fBk;r�t� 2 Pr�1; t 2 �igNk�1 over domains f�igNi�1. We
choose Nq 
 r � 1, for which the following integration by parts
formula holds:

XN
i�1

XNq
j�0

wij� _Bk;r�bij�Bl;r�bij� � _Bl;r�bij�Bk;r�bij��

� �Bk;r�1�Bl;r�1� � Bk;r�0�Bl;r�0�� (69)

A nonlinear programming problem, AN , is formulated based on
Sec. IV.A and using Eq. (67) to approximate the integrals. The
problem AN is to determine f�k 2 Rn; �k 2 RmgNk�1 that minimize

J� �̂��k; Bk;r�1�� (70)

subject to the constraints

XN
i�1

�XNq
j�0

wij

�
F̂��k; �k; Bk;r�bij��

�
XN
k�1

�k _Bk;r�bij�
�
Bl;r�bij�

�
� 0

l� 1; 2; . . . ; N (71)

 ̂��k; Bk;r�0�; Bk;r�1�� � 0 (72)

Problem AN can be solved using standard numerical optimization
software. Next, we derive the KKT conditions for problemAN . The
augmented cost is defined as

J0 � �̂��k;Bk;r�1���
XN
l�1
�l

�XN
i�1

�XNq
j�0
wij

�
F̂��k;�k;Bk;r�bij��

�
XN
k�1

�k _Bk;r�bij�
�
Bl;r�bij�

��
��T ̂��k;Bk;r�0�;Bk;r�1�� (73)

where �l 2 Rn and � 2 Rp are the KKT multipliers associated with
the constraints given by Eqs. (71) and (72), respectively. The KKT
conditions denoted by AN	 are derived by setting the partial
derivatives of J0 with respect to free variables equal to zero. Thus, for
m� 1; . . . ; N,

0� @J0

@�m
�
XN
l�1

�l

�XN
i�1

�XNq
j�0

wij�F̂xBm;r�bij�Bl;r�bij�

� _Bm;r�bij�Bl;r�bij��
��

(74)

� ��̂x�1� �  ̂x�1���Bm;r�1� �  ̂x�0��Bm;r�0� (75)

Using Eq. (69), we get

0� @J0

@�m
�
XN
l�1

�l

�XN
i�1

�XNq
j�0

wij�F̂xBm;r�bij�Bl;r�bij�

� _Bl;r�bij�Bm;r�bij��
��
�
XN
l�1

�l�Bm;r�1�Bl;r�1�

� Bm;r�0�Bl;r�0�� � ��̂x�1� �  ̂x�1���Bm;r�1� �  ̂x�0��Bm;r�0�

(76)

Rearranging Eq. (76),

0� @J0

@�m
�
XN
i�1

�XNq
j�0

wij

�
F̂x

XN
l�1

�lBl;r�bij�

�
XN
l�1

�l _Bl;r�bij�
�
Bm;r�bij�

�
�
�
�̂x�1� �  ̂x�1��

�
XN
l�1

�lBl;r�1�
�
Bm;r�1� �

�
 ̂x�0���

XN
l�1

�lBl;r�0�
�
Bm;r�0�

(77)

Also,

0� @J0

@�m
�
XN
i�1

�XNq
j�0

wijF̂u

�XN
l�1

�lBl;r�bij�
�
Bm;r�bij�

�
(78)

0� @J0

@�m
�
XN
i�1

�XNq
j�0

wij

�
F̂��k; �k; Bk;r�bij��

�
XN
k�1

�k _Bk;r�bij�
�
Bm;r�bij�

�
(79)

0� @J
0

@�
�  ̂��k; Bk;r�0�; Bk;r�1�� (80)

Thus, Eqs. (77–80) constitute the KKT conditions AN	. Based on
Sec. V.B and using Eq. (67), the discretized first-order optimality
conditions A	N are

XN
i�1

�XNq
j�0

wij

�
F̂��k;�k;Bk;r�bij���

XN
k�1

�k _Bk;r�bij�
�
Bm;r�bij�

�
� 0

XN
i�1

�XNq
j�0

wij

�
F̂x

XN
l�1

~�lBl;r�bij��
XN
l�1

~�l _Bl;r�bij�
�
Bm;r�bij�

�
� 0

�̂x�1� �  ̂x�1���
XN
l�1

~�lBl;r�1�� 0;  ̂x�0���
XN
l�1

~�lBl;r�0�� 0

 ̂��k;Bk;r�0�;Bk;r�1��� 0 (81)

for m� 1; . . . ; N. Comparing AN	 and A	N , we see that the results
from Secs. V.C and V.D hold. The equivalence conditions are

XN
k�1

�kBk;r�0� � � ̂Tx�0�� (82)

XN
k�1

�kBk;r�1� � ��̂x�1� �  ̂Tx�1��� (83)

The costates can be estimated as

	̂�t� �
XN
k�1

�kBk;r�t� (84)

VII. Remarks

The results presented in this paper not only deal with the
optimality analysis of a direct method based on Hilbert space
projection, but also provide a framework to analyze the optimality of
a more general class of approximation methods, known as methods
of weighted residuals (MWRs). This would be of interest because a
variety of approximation schemes can be derived from theMWRs for
different choices of weight functions [27]. For example, collocation
is one such scheme in which the weight functions are chosen as
Dirac-
 functions. In this section, we show that some already-
established results on costate estimation for the collocation-based
methods can be derived using the present approach. Consider the
case in which the computational domain t 2 ��1; 1� and basis
functions f�j�t�gNj�0 are the Lagrange interpolating polynomials of

degreeN. Let tk 2 ��1; 1� be the LGLnodes, so that t0 ��1, tN � 1,

and ftlgN�1l�1 are the zeros of _LN�t�. Here, LN is the Nth degree
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Legendre polynomial. It can the be verified that f�j�t�gNj�0 satisfy the
Kronecker-
 property

�j�tk� � 
ik (85)

Let the equality constraints in Eqs. (16) and (20) be imposed with a
slight modification and use the Gauss–Lobbato (GL) integration rule
over the grid ftkg, so that

1

wj

Z
1

�1
RF�t��j�t� !

1

wj

XN
k�0

wkRF�tk��j�tk� � 0;

j� 0; 1; . . . ; N (86)

��f � �0�
wj

Z
1

�1
Rh�t��j�t� !

��f � �0�
wj

XN
k�0

wkRh�tk��j�tk� � 0;

j� 0; 1; . . . ; N (87)

where wk are the LGL weights given by

wk �
2

N�N � 1��LN�tk��2
(88)

Note that Eqs. (16) and (20) are multiplied by 1
wj

to obtain the final

results in a desired weighted form. Using Eqs. (85–87), we can write

R F�tj� � 0; j� 0; 1; . . . ; N (89)

R h�tj� � 0; j� 0; 1; . . . ; N (90)

which implies that the residual errorsRF�t� andRh�t� are set to zero
at the nodes ftkg. This amounts to the satisfaction of the state
dynamics and the inequality constraints at the discrete set of points
ftkgNk�0. Thus, in this special case, theMHSP reduces to the Legendre
pseudospectral method, as described in [11]. Next, we derive the
equivalence conditions and costate estimates for this formulation.
Taking into account themultiplier 1

wj
introduced in Eqs. (86) and (87)

and using Eq. (85), the equivalence conditions from Eqs. (52) and
(53) take the following form:

XN
j�0

�j
wj
�j�0� �

�0
w0

����̂x�0� �  ̂Tx�0��� (91)

XN
j�0

�j
wj
�j�1� �

�N
wN
� ��̂x�1� �  ̂Tx�1��� (92)

Using the LGL integration rule, Eq. (54) takes the form

Ĥjt�t0 � Ĥjt�tN �
XN
j�0

wjĤjt�tj (93)

Using Eq. (85), the costate estimates are obtained from Eqs. (56–58)
as

	̂�tk� �
�k
wk
; 
̂�tk� �

�k
wk
; �� � (94)

We see that the conditions in Eqs. (91–93) are identical to the closure
conditions derived in [11]. Also, the costate estimates obtained from
equation set (94) are same as derived for theLegendre pseudospectral
method in [11]. Furthermore, these results are obtainedwithout using
any properties of the differentiation matrix employed in [11]. Hence,
the present method of costate estimation is more general in nature.

VIII. Numerical Examples

In this section, we use the MHSP to solve three optimal control
problems and the results are compared with the known analytical
solutions.We present these examples to numerically demonstrate the
costate estimation results stated inTheorem1. Thefirst example has a

linear plant with a quadratic cost function. The second example has a
nonlinear plant and a terminal cost function. These two problems are
solved using both B-splines and Legendre polynomials as basis
functions. We would like to clarify that the two approximation
schemes are chosen to demonstrate that the MHSP can be used with
both local (B-splines) and global (Legendre polynomials) basis
functions. The focus is on showing that the costate estimation results
of Theorem 1 hold in both the cases.We do not intend to compare the
accuracy of one approximation with the other. The third problem
demonstrates the efficacy of the MHSP in the presence of path
inequality constraints. This problem has a linear plant with a state
inequality constraint and is solved by using B-splines as basis
functions. All of these examples are programmed in MATLAB®
with SNOPT as the NLP solver. The transcription of OCP to NLP is
done using OPTRAGEN [30], a MATLAB® toolbox that performs
the transcription automatically. The results are compared with the
available analytic solutions. The measure for accuracy is defined as
the %L2 norm of the error with respect to the analytic solution.

A. Example 1: Linear Plant with Quadratic Cost

Minimize

J� 1

2

Z
1

0

�x2�t� � u2�t�� dt (95)

subject to

_x�t� � x�t� � u�t� x�0� � 0 x�1� � 1 (96)

where fx�t�; u�t�g is the state-control pair. The analytical solution to
this problem is given by [31]

x��t� � �0:2584e�
��
2
p
t � 0:2584e

��
2
p
t (97)

	��t� � �0:6238e�
��
2
p
t–0:1070e

��
2
p
t (98)
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a) Legendre solution
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b) B-Spline solution

Fig. 4 Numerical results for example 1 show excellent agreement with
the analytical solution. Legendre polynomials are used as basis functions.

The costate estimated from the KKTmultipliers has a%L2 error of the

order of 10�12. B-splines are as used as basis functions. The%L2 error in

the costate estimate is of the order of 10�8. The equivalence conditions

hold for both the cases. Solid is numerical, dashed is analytical.
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u��t� � �	��t� (99)

where 	��t� is the costate associated with the optimal solution. The
analytic optimal cost is J� 0:2959. This problem is first solved by
choosing the basis functions f�j�t�gNj�1 as Legendre polynomials

with N � 8. Next, the solution is obtained using B-splines as
approximating functions for which we use fourth-order piecewise
polynomials overfive intervalswith third-degree smoothness at node
points. We use the KKTmultipliers of the NLP solution to check the
equivalence conditions. The costates are estimated using Eq. (57).
The results in Fig. 4 show excellent agreement between the analytic
solution and the solution obtained from the MHSP. It is evident that
the costate estimate obtained directly from the KKT multipliers by
using Eq. (57)matches well with the actual costate given by Eq. (98).
Table 1 summarizes the results for example 1.

B. Example 2: Nonlinear Plant with Terminal Cost

Minimize

J��x�tf� (100)

subject to

_x� x�t�u�t� � x�t� � u2�t�; x�t0� � 1; tf � 5 (101)

where fx�t�; u�t�g is the state-control pair and tf � 5 is the final time.
The analytic solution given by Huntington [32] is

x��t� � 4

1� 3et
	��t� � �e

�2ln�1�3et��t�

�e�5 � 6� 9e5�
u��t� � 0:5x��t� (102)

where 	��t� is the costate associated with the optimal solution. The
analytic optimal cost is J��0:009. The problem is solved using
Legendre polynomials as basis functions with N � 8. For the
solution obtained by using B-splines as approximating functions, we
use twelfth-order piecewise polynomials over seven intervals with
sixth-degree smoothness at node points. In both cases, the costates
are estimated using Eq. (57). The results are presented in Fig. 5. The
L2 error in the costate estimate is 1:2 
 10�5% for the B-spline
solution and is higher (0.1014%) for the Legendre polynomials
solution. The reason Legendre polynomials do not perform well in
this example is that the system is highly nonlinear. A higher-order
polynomial approximation is required to obtain a better solution.
Also, our results show that equivalence conditions must hold to

Table 1 Example 1 results

Approximating functions Legendre polynomials B-splines

% L2 error in state x�t� 1:2 
 10�14 3:1 
 10�9

% L2 error in control u�t� 2:8 
 10�12 6:8 
 10�8

% L2 error in costate 	�t� 2:9 
 10�12 2:8 
 10�8

Equivalence conditions:P
N
j�1 �j�j�0� � ��̂x�0� �  ̂Tx�0��� 0:3 
 10�6 0:5 
 10�4P
N
j�1 �j�j�1� � ��̂x�1� �  ̂Tx�1��� 0:4 
 10�7 0:2 
 10�4

Error in cost 4:6 
 10�5 4:7 
 10�5
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b) B-Spline solution

Fig. 5 Comparison of numerical results with the analytical solution for

example 2. Legendre polynomials are used as basis functions. The

estimated costate has a 0.1014% L2 error. The equivalence conditions
have a large error. B-splines are as used as basis functions. The %L2

error in the costate estimate is of the order of 10�5. Solid is numerical,

dashed is analytical.

Table 2 Example 2 results

Approximating functions Legendre polynomials B-splines

% L2 error in state x�t� 1:5 
 10�7 1:6 
 10�11

% L2 error in control u�t� 1:7 
 10�2 2:8 
 10�4

% L2 error in costate 	�t� 0:1014 1:2 
 10�5

Equivalence conditions:P
N
j�1 �j�j�0� � ��̂x�0� �  ̂Tx�0��� �0:0972 0.0001P
N
j�1 �j�j�1� � ��̂x�1� �  ̂Tx�1��� �0:0573 0.0040

Error in cost 3:7 
 10�5 1:5 
 10�7
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c) Costate trajectories

Fig. 6 Comparison of numerical results with the analytical solution for

example 3 (Breakwell problem). B-splines are used as approximating

functions for state and control variables. The costates estimated from the

KKT multipliers capture the jump discontinuity in costate �1�t�. The
equivalence conditions have larger error for�1�t� than�2�t�.L2 error in

�1�t� � 2:2253%, L2 error in �2�t� � 0:0116%. Solid is numerical,

dashed is analytical.
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obtain costate estimates. However, in the Legendre solution we see
that the equivalence conditions have a large error, resulting in
erroneous costate estimates. Table 2 summarizes the results for
example 2.

C. Example 3: Linear Plant with State Inequality Constraint

Minimize

J� 1

2

Z
1

0

u2 dt (103)

subject to

_x1 � x2 (104)

_x 2 � u (105)

x1�0� � 0; x1�1� � 0; x2�0� � 1; x2�1� � �1 (106)

x1�t� 	 l� 0:1 (107)

In the literature [2], this problem is known as the Breakwell problem.
We use this problem to demonstrate the applicability of the MHSP
in the presence of state inequality constraints, which were not
considered in our problem formulation for simplicity. The Breakwell
problem has a second-order state inequality constraint. The analytic
solution to this problem is given in [2]. The costates associated with
the state equations (104) and (105) are denoted as 	1�t� and 	2�t�,
respectively. The optimal cost is J� 4

9l
� 4:4444. The optimal

switching structure for this problem is free–constrained–free, and
the costate 	1�t� has jump discontinuities at times t1 � 3l and
t2 � 1 � 3l. We solve this problem by using B-spline approximation
with fourth-order piecewise polynomials over 20 intervals with
third-order smoothness. The results are presented in Fig. 6. The states
and control trajectories show an excellent match with the analytical
solution. The costate estimates capture the jump discontinuity in
	1�t�. We see that the equivalence conditions evaluated using
Eqs. (52) and (53) have a larger error for 	1�t� compared with 	2�t�.
Therefore, the L2 error in the estimate of 	1�t� (2.2253%) is greater
than the error in the estimate of 	2�t� (0.0116%). The results are
summarized in Table 3.

IX. Conclusions

A direct trajectory optimization technique based on Hilbert space
approximation has been presented. In this approach, any set of
linearly independent continuous functions can be used to param-
eterize the state and control trajectories. A set of equivalence con-
ditions are derived under which the difference between a direct and
indirect method solution vanishes. These conditions facilitate the
estimation of costates from the KKT multipliers associated with the
direct optimization. This result provides a generalized framework for
the optimality analysis of awide range of approximation schemes. To
demonstrate this claim, the costate estimation results for the
Legendre pseudospectral method are shown to be consistent with the

results presented by other researchers. We present numerical results
on the costate estimation for generalized B-spline parameterization,
which show excellent agreement with the analytical solutions. The
numerical results demonstrate that the present method can address a
fairly general class of optimal control problems, including problems
with pure state inequality constraints.
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